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FOREWORD

This publication is the fourth in a DOFL-report series
on the basic design and operating principles of fluid ampli-
fication. As reported in reference 1, the objective of a
proportional fluid amplifier is to achieve—without mechan-~
ical moving parts—the control of fluid power by a lesser
amount of power. A realization of this objective, which
was proved feasible, would result in a fluid device having
signal-power gain, small-signal linearity, broad bandwidth,
and high reliability. In many respects, the device would be
analogous to the transistor in the field of electronics.

Specifically, this report presents a theoretical analy-
8is of pressure, volume flow, and power gains of a propor-
tional fluid amplifier and compares predictions with exper-
imental data. The analysis was made assuming an incompress-
ible fluid; the measurements were made using air at pressures
less than 5 psig.

Also included are generalized background discussions on
jet-stream characteristics and power-jet deflectionmns.



NOMENCLATURE

area £t?
output aperture width ft
force 1bf
gain nondimensional
conversion factor EE;E_EEE_gi
1bf sec

distance from point of apparent emanation of the

power jet to output apertures ft
distance from power nozzle exit to output aperture ft
total pressure (gauge) 1bf/£t®
volume flow rate £t3 /sec
velocity ft/sec
nozzle width ft
ratio of dynamic to total pressure (gauge) nondimensional

stream deflection angle (measured from inter-
action region)

angle to arbitrary point of stream
stream deflection angle

density

standard deviation

angle of spread of the power stream

angle subtended by one output aperture

radians (or deg)
radians (or deg)
radians (or deg)
1bm/£t3
radians (or deg)
radians (or deg)

radians (or deg)
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NOMENCLATURE—Continued
(Subscripts)
power stream
left-control stream
right-control stream
average value
output aperture
signal input
left-output aperture entrance
maximum value
signal output
pressure
power
flow rate
right-output aperture entrance

static conditions
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Proportional fluid amplifier—basic design.

Power-jet pressure profile at entrance to output apertures,
Schematic diagram of jet diffusion.

Experimental profiles.

Jet impinging on a flat wall,

Fluid amplifier interaction region.

Theoretical flow gain versus stream deflection with stream
width as a parameter.

Theoretical pressure gain versus stream deflection with streah
width as a parameter.

Theoretical power gain versus stream deflection with stream
width as a parameter.

Theoretical gain versus downstream distance constant-width
aperture (9s = 0).

Theoretical gain versus downstream distance constant-deviation
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(6 = 0).
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Functional diagram of test setup.
Comparison of experimental and theoretical flow differences.

Comparison of experimental and theoretical pressure differences.

Free body diagrams of the interacting streams.



1. INTRODUCTION

To achieve fluid amplification without mechanical moving parts,
a power nozzle is used to transform the energy initially stored in
static pressure into dynamic pressure. This power stream of high
energy fluid passes through an interaction region and is partitioned
into two output apertures as shown in figure 1. Control streams
placed at each side and usually normal to the power stream determine
the direction of flow of the power stream. Variations in the net
thrust of the control streams change the deflection of thée power
stream, and thereby change the division of fluid between the two
output apertures (fig. 2).

The gain of a proportional amplifier is defined as the ratio
of the change in the variable of interest at the output to the
change of this variable at the input-—that is, the ratio of output
to input signal. The theoretical analysis that follows was made of
the gains in pressure, volume flow, and power; predictions were
compared with experimental data. An incompressible fluid was assumed
in this analysis and the measurements were made using air at less
than 5 psig.

2. CHARACTERISTICS OF JET STREAMS

The operation of a proportioning fluid amplifier is dependent
upon controlling and collecting the fluid stream issuing from a noz-
zle. To understand fluid amplification, therefore, some knowledge
of jet-stream characteristics is necessary.

A fluid stream discharging into a fluid initially at rest under-
goes both lateral diffusion and deceleration (ref 2) while the sur-
rounding fluid is brought into motion. The reason for this is that,
at the exit of the nozzle, a high velocity gradient exists between
the stream and the surrounding fluid. Eddies generated in this re-
gion produce a lateral mixing process resulting in the formation of
two distinct regimes (fig. 3), the zone of establishment and the
zone of established flow. Over an extremely wide range of Reynolds
number (ref 2), the stream characteristics remain essentially un-
changed. The zone of establishment ends about 6 nozzle widths down~-
stream from the nozzle exit for the conditions of interest here. 1In
this zone the mixing process has not penetrated to the center line
of the jet stream, and the conditions at the center line are still
the same as at the nozzle exit. At approximately 6 nozzle widths
the fluid enters the zone of established flow. In this region the
velocity throughout the stream decreases as the distance from the
nozzle exit increases.

The fluid in the amplifier under consideration differs from the
stream described above, because it is confined between parallel



‘udysep oI1seq—aatTyridue pIniy TBUOTIIOodOld

1NdLNO LHONY —-— ¢

‘T aan3tyg

il
IA

.

¥

TOHLNOD
1HOIM

lNdinNO 14371 == g

TI081NOD

1437

WV3YL1S
d3IMOd

10



11

‘soaniaade jndino o3 9dueIud je 91TFoxd aanssaad jo9l-aamod g @xn314g

——

| i

(g)d
(g +0)d

s3|LIN3¥1x3 b b sa3i1n3uLxa
JUNLEIdY — e 3HALN3AY

-llllmmll

f

—— P4 —ta— Pg— ——

— weew e e by Ey B RN DD BN DB R DS IR B e e



‘uotsnyyIp 1ol Jo weaSeip O211BWSYOS ¢ dandtd

In >xpw A

—d oy

’l

V

MO14 d3HsINgvls3

13r 40 NOILVNVIN3
40 LINIOd 1N34vddv

A=
XDW A=

Im

LLLLLLL k

7777777

—— 'M 9 XONddY —«

LN3WHSIT8V1S3

40 3NOZ

40 3INOZ

12



PRSI

ege VBN JTUE UEE NN BNy DED N M BN W WEe e e

plates. In the unconfined stream, only the tangential shear within
the mixing region decelerates the jet stream, and since this pro-
cess is completely internal, momentum flux is conserved. In the
confined stream, the top and bottom plates exert a shearing force
on the stream. This process is external to the stream, and momen-
tum flux is not conserved. Consequently, the zone of established
flow appears to emanate from a point on the center line farther up-
stream from the nozzle than the apparent point of emanation of an
unconfined stream (ref 3).

Dynamic pressure profiles (taken at DOFL) of a two-dimensional
(2-D) stream confined between parallel plates are shown in figure 4.
The ratio of the distance between plates to the nozzle width (as-
pect ratio) was 8. Integration of these profiles confirms the fact
that momentum flux is not conserved, but decreases with increasing
distance from the nozzle exit. In this case, the stream appears to
emanate from a point 4 nozzle widths upstream from the exit. As
the aspect ratio is lowered this distance is expected to increase.

The maximum pressure of these experimental profiles occurs on
the center line of the stream. These data show that the maximum
pressure 7 nozzle widths downstream of the exit dropped to 95 per-
cent of the exit pressure; at 11 nozzle widths, to 68 percent of the
exit pressure. The shape of these profiles is similar to those
found in reference 2 for 2~D jets without parallel plates.

It is to be noted that the experimental profiles were obtained
in the absence of output apertures. Experimental evidence indicates
that the static pressure throughout the zones of motion is constant
if no obstructions are present. The stagnation pressure at the
edges of the apertures affects the profiles; however, if the edges
are sharp, this effect is believed to be small,

3. ANALYSIS OF POWER-JET DEFLECTION

The following analysis of the power-jet deflection by means of
the control stream is based on three assumptions:

(1) The fluid is incompressible and steady,

(2) The flow is steady.

(3) The impingement of the control stream on the power stream
may be viewed as a 2-D potential motion problem where the
power jel 1s considered as a nondeformable wall. This
means that there is no mixing between the control and
power streams.

The thrust exerted by the control stream on the power jet is

computed from Newton's second law, which for a frictionless fluid
in steady motion may be written as

13
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surface surface

wggre p and V are the density and velocity of the control stream,
dA is incremental area, p_ is static pressure, and g, is the grav-
itational conversion factor. This equation simply states that the
sum of the external forces acting on the system is equal to the
rate of change of momentum of the bounded mass system.

Assuming that the problem of determining the velocity vV is
similar to the classical problem of the impingement of an incom-
pressible, frictionless, steady stream on a flat wall, the result
is given by the curves of figure 5a.

The solution shows (ref 4) that the streamlines are hyperbolas
whose asymptotes are the x and y axes. The control stream, there-
fore, follows along the side of the power jet with no bounce. If
the configuration in figure 5a is modified by inserting walls at
the middle and edge filaments, and if the power jet replaces the
wall, the streamlines remain essentially unchanged (figure 5b).

The geometry of the classical problem now conforms to the inter-
action region of the fluid amplifier and V is determined. The de-
sired relation between stream thrust and deflection angle is derived
in appendix A.

4. THEORETICAL DEVELOPMENT OF GAIN

4.1 Flow Gain

The flow gain GQ of a proportional amplifier is defined as
the ratio of the change in the output volumetric flow difference A
to the change in input volumetric flow difference AQ; so that

- 09 2
GQ - AQy (2)
or
A(Q, Q)
¢ = %R (28
Q~ AQ,-Qy)

where the subscripts L and R refer to the left-and right-output
apertures, and 2 and 3 refer to the left- and right-control nozzles,
respectively.

The output-flow difference Q, is a function of the pressure
profile p(O,Qs), the angle subtended by the apertures Qd, and the
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downstream distance of the apertuies { (fig. 1), where © is an arbi-~
trary angle and 85 is the stream deflection angle:

QO = QO(O’OS’gd’L) (3)

The total differential of equation (3) is

3Q, 3Q, aQ, 3Q,
dQ, = —3g 90 + 36, dae_ 5, a8, + >t a (4)

For small increments, the flow gain may be written as

G on aQo de aQo des aQo ded aQo dl

Q= dq, T 3@ dg T3 do, T 38, dg, * B aq

(5)

Assuming that the pressure profile does not change for
smuIl controll inputs, %%— = 0; and since 84 and { are independent
1
of Q> the gain expression reduces to
_ aQo dgs
Q bGS dei

G (6)

From the definition of flow rate, the output flow dif-
ference may be written as

Qo = AL vavL - AR vavR (7

where , for example, is the area of the left aperture and v__ is
the average velocity. For an incompressible fluid, the total
pressure at the entrances and exits of the apertures is the sum of
the static and dynamic pressure; moreover, the static pressure of
the fluid stream approaching nonloaded apertures is ambient, so

that the output volume flow rate may be computed from p = Eg_ v2.
c

In terms of the pressure profile p(8+84,1) the average velocity is

84
g
vV_ = /——c'—]; j p]/a (8+8_,1) de (72)
av p Od o 8
d

17
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and the ocutput volume flow rate is

—

_ !
[ I Ve (9+9 »4) d9-AR f p (9+9 ,L)déJ (8)
L =94

The relation between stream deflection y and input-flow
difference is derived (app A) by applying the momentum equation to
the interaction region, If the left and right control areas are
equal, the relation is approximately

2 y
p(1+0;,) (1+ sin m)(Qi+2Q1Q3)

2 8,05 A A, (1+00)(p;)
where (@ is the ratio of dynamic to total pressure, ¢ is the dif-

ference in deflection between power stream and control stream, and
the subscript 1 refers to the power nozzle.

tan Y =

(9)

It should be noted that the angles 64 and Y are measured
from different vertices. Experiments have shown that the power stream
appears to radiate from a source approximately 4 nozzle widths up-
stream of the power-jet exit (for an aspect ratio of 38), but it is
deflected about the point of intersection of the power- and control-
nozzle center lines.

From figure 1, the geometrical relation between angles

8, and Y is

S
tan § = -———— tan Y (10)

where L is the downstream distance from the point of apparent eman-
ation to the apertures and wg is the control-nozzle width.

if the areas of the left and right apertures are equal,
the theoretical flow gain obtained by combining eq (6), (8), (9),
(10) and normalizing the pressure is

Ka,A A p L) | pY2(0 40 1) PYR(-8.46_,0)  2pYP(e_ 1)
= - 11
Q= Qme ™ |TPRD ) ey | Y

G

where pm(L) refers to the maximum pressure of the profile,
. W ]
24, (4~ 7;)(1+O§)(1+ sin @) cos o,
AlL(1+Q&)Ob

K =

and
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1 p

and where it must be kept in mind that

ap(9+Os)

ap(9+98)

L
8

4.2 Pressure Gain

=

08

The pressure gain of a proportional fluid amplifier is
defined as the ratio of change in total output pressure differ~

ence, to the change in total input pressure difference.

be written as

This may

A&p -
G & —— 12
0" o, (12)
or
ACPy -Pp)
G = Z-E-——:—-i- (128)
P Py~P3
The output pressure difference po is a function of the
pressure profile, p(8,0 ), the width of the apertures ed, and the
downstream distance of %he apertures, {; that is
P, = po(e,es,od,c) (13)
The total differential cf equation (13) is
op op op op
o o o )
dpo— 30 d9+Edes+§€;ded+ oY) di (14)
For small increments, the pressure gain may now be written
as
. dpo ) apo de . apo dGs . apo ded . apo at 15)
p dp, 98 dp, ~ 90  dp, ~ 06, dp, 3L dp,

Assuming that the pressure profile
small control inputs, and since 6  and L are

gain expression reduces to d
. - apo dGs
p = 6 dp,

does not change for
independent of pi, the

(18)

From the assumptions, the output pressure is in the fomm

of dynamic pressure; therefore,

19
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=L & __P .2 7
Po = ch VavL 2gc VavR (an

By using the expression for average velocity, the output
pressure difference is

23 0 -]

&
T I T R T B _ip’/z(ews,ude (18
d d 94

o

The relation between stream deflection and input pressure
difference is derived in appendix A. If the left and right control
areas are equal, the relation is approximately

(1+Qb)(1+sin ® p
tan Y = AZ i (19)
A1(1+<11)p1

From the geometrical relation in equation (10), equation
(19) may be written as

w
A, (L~ 2)(1+0,) (1+sin @) P,

tan & = (20)
s A1L(1+o‘1)p1

A theoretical expression for pressure gain is obtained by
combining equations (16), (18), (20), and normalizing the pressure
so that

0KP (L) p"“(e #_,1) PR 0) p"2<e+e 1)
Gp= epll_ pl’a(u - P2 (1) .[ PR a6

Y30, ¢) pY2 (-6 +8 ,1) 9 Y2 (0+0_,1)
s - d_s l—j de (21)
PrEC) PV (T) 0,4y PP (4)

d

where, as before,
w

2A2(L- Eg)(l+ob)(1+sin ¢) cos®
AlL(1+a1)ocz

4.3 Power Gain

The power gain may be defined in terms of pressure gain
and flow gain, so that
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Ap  AQ
[e] (o]
G = | —2
pQ | Ap, AQ 22)
or,
GPQ = I G, GQ (22a)

The .theoretical expression for power gain is, therefore,
obtained by multiplying equation (1l1) by equation (21},

5. APPLICATION OF THEORY

5.1 Predicting the Gain of a Fluid Amplifier

The theoretical expressions for flow and pressure gain
are given in equations.(l1l) and (21). Gains are calculated from
these equations by specifying:

(a) The shape of the pressure profile at.the entrance
to the apertures;

(b) The physical dimensions of the amplifier;

(c) The ratio of dynamic pressure to total pressure for
control (az) and power ((xl) streams; and

(d) The turning angle of the control stream ¢o.

Experimental (fig. 4) and theoretical analyses (ref 2) of
2-D submerged jets show that the pressure profile is approximately
Gaussian in the region of established flow. This may be expressed

mathematically as
(8-8_)%
p(8) AP XP | T s (23)

At power-stream pressures of 5 psig, and an aspect ratio of 8:1, these
data gave a peak pressure p of 3.5 psig and a standard deviation ¢

of approximately 2,40 deg al 11 nozzle widths downstream. Since the
value of ¢ depends to some extent on aspect ratio, the dependence of
pressure and flow gains on g is also considered.

The ratios and were determined experimentally as
= 0,84 and = 0.23 at the operating pressures of the amplifier.
gﬁese operating pressures were chosen below 5 psig so that the
assumption of incompressibility would be valid.

The turning angle @ has been taken as 8 deg, since the power
stream spreads at approximately this angle in the interaction region.
The direction of flow of the control stream as it leaves the inter-
action region therefore differs from the axis of the power stream by

this angle. 21
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When these o values are employed in equations (11), (21),
and (22), the theoretical flow, pressure, and power gains are deter-
mined. Figures 6, 7, and 8 show the theoretical gains plotted
against deflection angle for a Gaussian profile,

5.2 Optimization of Gain

Consideration will now be given to the effect of varying
certain physical dimensions of the amplifier to optimize the gain
using measured pressure profiles,

It should be noted that the pressure gain given by equation
(21) 1is not directly proportional to the ratio of control area Ag and
power area Ay alone, since the ('s are also functions of the areas.
This applies also to the ratio of flow rates /Q. in the flow gain
expression (eq 11). Since the functional relafion between the areas
(or flow rates) and the ('s is not analyzed here, the effects of vary-
ing the area ratio or flow rate control to power ratio is not consid-
ered.

5.2.1 Constant-Width Apertures—-Varying Distance Downstream

As the downstream distance of constant-width aper-
tures is increased, each aperture accepts a smaller percentage of the
total stream. The peak pressure is also decreasing with increasing
downstream distance. Using experimental profile data taken at DOFL,
these quantities may be related to downstream distance. Figure 9 is
a plot of theoretical pressure, flow, and power gains versus downstream
distance for the case of a constant width aperture equal to 1.5 power
nozzle widths and a stream deflection © = 0., The theoretical gains
maximize at 11 nozzle widths downstream.

5.2.2 Constant-Deviation Apertures——Varying Distance Down-
stream

If the apertures are constrvained to subtend a fixed
angle, the aperture width must increase with increasing downstream dis-
tance. Figure 10 shows the relation between theoretical pressure, flow,
and power gains, and downstream distance for a fixed aperture angle of
2.4 deg at a stream deflection of 8, = 0. The pressure gain decreases
monotonically in the region of established flow, whereas the flow gain
increases monotonically. The power gain, however, exhibits a maximum
at about 11 nozzle widths downstream.

5.2.3 Varying-Width Apertures—Fixed Downstream Distance

Varying the width of apertures at a fixed downstream
position varies their position with respect to the pressure profile.
Figure 11 is a plot of theoretical pressure, flow, and power gains
versus the equivalent g width at 11 nozzle widths downstream and OS=0.
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The flow gain increases monotonically until the apertures increase
to the width of the power stream; thereafter, increasing the aper-
ture width does not change the gain. The pressure gain is a maximum
at an aperture width of 1.70, and the power gain is a maximum at ap-
proximately 2.50.

6. TEST SETUP AND PROCEDURE

To check the theoretical analysis, tests were performed on the
amplifier shown in figure 12. This amplifier has the following
dimensional features:

(a) The nozzle widths of power and control streams are approx-
imately equal.

(b) The entrance width b of each output aperture is 1.5 power
nozzle widths.

(c) The entrance of the apertures is fixed at 11 power nozzle
widths from the exit of the power nozzle.

(d) The ratio of nozzle height to power nozzle width (aspect
ratio) is 8.

A functional diagram (fig. 13) shows the test arrangement used
with this amplifier. The test setup consists of a regulated air sup-
ply to each nozzle and the means of measuring input and output condi-
tions. The flow rate into the nozzles and out of the apertures is
measured with rotameters that have a full-scale accuracy within 2 per-
cent. The pressure in the control-input tanks is measured with manom-
eters.

During a test, the power stream settling tank was maintained at
a constant pressure of 3 or 5 psig. One of the control tanks was also
kept at a constant pressure, which is 0 to 20 percent of the power-
stream pressure. Small changes were then made in the other control
pressure. The flowmeters at the input and output were read at each
control-pressure point.

It may be seen in figure 12 that there are through-holes on each
side of the power stream in the region between the control jets and
apertures. This effectively short circuits any pressure difference
across the stream, thereby insuring stream stability.

7. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

In comparing the theoretical and experimental results, it is
advantageous to plot output difference versus input difference rather
than gain versus deflection angle, since calculation of experimental
gain requires division by small differences, which reduces the accuracy
of the results. Equations (2) and (12) show that the slope of the
curve that has the output difference as ordinate and input difference as
abscissa will be the gain of the amplifier.
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7.1 Flow Difference

If the conditions given in section 5.1 are assumed again,
a theoretical relation between aperture-~flow difference QL'QR and
control-flow difference QZ'QS can be calculated from equations (8),
(9), and (10). The theoretical and experimental flow difference
results are shown in figures 14 and 15.

The theoretical and experimental results are in close
agreement until the control flow difference reaches 10 percent of
the power stream flow. As the control flow increases above this
value, the experimental results become higher than predicted by the
theory.

7.2 Pressure Difference

The theoretical relation between aperture pressure dif-
ference pL-PR and control pressure difference Pp=P3 can be calcu-
lated from equations (18) and (20) by using the conditions given
in section 5.1. This relation is shown in figures 16 and 17 for
both theoretical and experimental results. In the experimental re-
sults, the dynamic pressure at the entrance to the apertures is com-
puted from the output flowmeter readings by relating dynamic pres-
sure to average velocity and using the equation of continuity.

The experimental and theoretical curves have essentially
the same shape. For small control pressure differences, the agree-~
ment is good. As the control pressure difference increases, the
experimental aperture pressure difference becomes larger than pre-
dicted by the theory. The maximum value, or point of zero gain,
occurs when the control pressure difference is approximately 10 per-
cent of the power stream pressure,.

8. DISCUSSION

To obtain the theoretical ocutput differences a Gaussian pres-
sure profile was assumed. This profile was selected from those
found. experimentally by specifying the same standard deviation and
maximum value. Increasing the standard deviation of the theoretical
profile as much as 20 percent caused only a negligible change in the
output difference functions, Py ~PR and QL~9R> because all apertures
were almost equally affected. This was also confirmed experimentally.
The experimental profile was broadened by increasing the percentage
of control pressure; however, tests made at 10-, 20-, and 30-percent
control pressure yielded close results. If the maximum value of the
Gaussian is changed, the output difference functions are also changed.
According to the theory, the aperture difference pressure is directly
proportional to the maximum pressure. The experiments made with power
stream pressures of 3 psig and 5 psig tended to confirm this. At a
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power stream pressure of 5 psig, the maximum aperture pressure dif-
ference was 2.78 psig. At 3 psig, the aperture pressure difference
was 1.75 psig. The ratio of these is 0.63 compared with the predic~
tion of 0.60 from the theory. In addition, experimental profile

data of undeflected streams obtained at DOFL were substituted in the
theoretical equations, The result was within 5 percent of the re-
sult obtained with the Gaussian profile. It must be concluded, then,
that the use of Gaussian profiles in pluce of actual undeflected pro-
files leads to relatively small errors in the theoretical results.

To obtain the theoretical input differences, the momentum equa-
tion was applied to the interaction region (app A). An approximate
relation has been employed to give the input-pressure difference
Pg~P3 in equation (20) and the input-flow difference QZ-Q3 from equa-
tion (9). At present there are no experimental data available to
check the accuracy of this relation.

As the control differences increase, the experimental output dif-
ferences become greater than the theory predicts. The theoretical
output differences were based on the assumption of a Gaussian profile.
At present, profiles of highly deflected streams have not been taken
but they are not expected to remain Gaussian; therefore, the use of a
profile that remains Gaussian restricts the theoretical results to
conditions where the steam deflections are small.

The experimental difference functions are greater than the theory
predicts. 1In the present tests the total output flow was greater than
the profile indicated, even when the stream was not deflected. This
occurs because a fluid whose velocity is nonuniform at the input to
an aperture continues to entrain fluid after the fluid has entered the
collectors. In this analysis, all calculations were made under the
assumption that the velocity profile at the input to an aperture is un-
affected by the presence of the aperture.

9. CONCLUSIONS

A theory has been presented that predicts small signal pressure,
flow, and power gain of a single amplifier stage. The theory indicates
that a power gain of about 100 is easily achievable with pressure and
flow gains of about 10.

All gains are at maximum when the power stream is evenly divided
by the two output apertures. The gains decrease with deflection angle
and become zero when the stream is approximately centered in one of
the apertures.

The power gain maximizes at about 11 power-jet nozzle widths down-
stream with aperture widths 1.5 times the power-jet nozzle width.

37



38

Comparison of those aspects of the theory, which could be
checked on a single laboratory model showed good agreement within
the experimental error. On this podel the pressure gain was cal-
culated to be 9.1 and measured 8.4; the flow gain was calculated to be
10.5 and measured 9.4.
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APPENDIX A

THEORETICAL ANALYSIS OF INTERACTING STREAMS—MATHEMATICAL DERIVATIONS

To formulate the expression for gain in equation (6) and (16),
it is necessary to have a relationship between input difference
and the stream deflection. This relation can be obtained by the
application of the momentum equation to the control and power
streams.

In the derivation it is assumed that the fluid is incompress-
ible, the flow is steady, there is no energy loss, and the change in
momentum is due only to the change in direction of the interacting
streams. Experiments have shown that the axes of the power stream
and control streams are not parallel after interacting because of
the characteristic spreading of a jet stream, This fact is consid~
ered in the derivation.

From the above assumptions and neglecting body forces, the
momentum equation

—J p. A= | £ (v dd¥V (A-1)
s gc
Area Area
may be written as Newton's second law
al o
YF=T ok (a-2)

where ¥ is the momentum vector and F is the force vector.

From the free body diagrams shown in figure A-1, the following
component equations are obtained (where the subscript w denotes the
wall):

Left-Control Stream
Z:F = M
X X

P oA, €OS BHD_ A, sin(@-Y)-F ,= - ét sz; sin (9~Y)- éL szz cos B
(A-3)
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Pyghy 510 B + T

- = P - LAy
w2 Fy2 PypAC08(qrY)= Z A,v5 cos(gY) gcszz sin B
(A-4)
Right-Control Stream .
zF = i
x X
- - )~ B 3 _E
F 3~P_ gAscos B psSAssin(¢*Y z Avy sin(g+y)+ A v3 cos B
c c (A~-5)
ZF = i
y y
)= _9. - L.
pssAasin B+F w3 y3 p A cos(¢*Y g A3v cos (@tY) A3v3 sin B
(A-6)
Power Stream
ZF = iﬁ
X X
- e -
sz Fx3 p A1 sin ¥ = 5 Alv1 sin vy (A-T7)
ZF =M
y y
L -F - - = P -
pS1A1+ A Alvi Fy2 Fy3 pslAl cos Y = gc Alvl cos Y (A-8)
Wall
wa3 =P A, ; wa2 = Pgohy (A-9)
Now, if eq (A-7) is divided by eq (A-8)
F _-F
x2 x3
tan ¥ = AVE T, F (A-10)
1T €N y3

Substituting equations (A-3), (A-4), (A-5), (A-6), and (A-9)
into (A-10) the result is
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equation (A-14) becomes

(A, (p,+ 5&?’;)"\3(1’3* Eg-;vg)][1+sin ]

tan Y = (A-16)
_P B
A (py+ 55y
c
If A2 = A3 equation (A-16) takes the form in equation (19) with
pi " p2 - p3; that is,
. A, (140,) (14+sin 9)(p,) (A-17)
A, (1+00)p,
where, by definition
-] 2 ]
o= vy ' o - o = oV, _ vy
= y = - =
28.Py 3 2g.p,  2g.Pg

For the flow-gain expression, it is convenient to express
equation (A-17) in terms of control flow rather than control pres-
sure.

Expressing p2 and p

in terms of Q, 5 vy and v, and still assum-
ing that A2 = A3, gives

3 3

- _ ___&__ 8_. .2 3_ B -
Pp~Py = 22 0, (vy=v3) z_p"AT (5-93) (A-18)

By definition Q1 = Qz - Q3 so that

- - 2 -
P,P, = ég—c(‘;—z-xg (Q7+2Q,Q,) (A-19)

Substituting equation (A-19) for p1 in equation (A-17) gives

p(L4ty) (1+ sin 0)(o¥42q,Q))

tan Y =
2gcoz2A1A2( 1+°‘1)p1

(A-20)

which is equivalent to equation (9).
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